ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.11493
23
0

Accelerating Convergence in Global Non-Convex Optimization with Reversible Diffusion

19 May 2023
Ryo Fujino
ArXivPDFHTML
Abstract

Langevin Dynamics has been extensively employed in global non-convex optimization due to the concentration of its stationary distribution around the global minimum of the potential function at low temperatures. In this paper, we propose to utilize a more comprehensive class of stochastic processes, known as reversible diffusion, and apply the Euler-Maruyama discretization for global non-convex optimization. We design the diffusion coefficient to be larger when distant from the optimum and smaller when near, thus enabling accelerated convergence while regulating discretization error, a strategy inspired by landscape modifications. Our proposed method can also be seen as a time change of Langevin Dynamics, and we prove convergence with respect to KL divergence, investigating the trade-off between convergence speed and discretization error. The efficacy of our proposed method is demonstrated through numerical experiments.

View on arXiv
Comments on this paper