ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.12470
19
8

Quasi-Monte Carlo Graph Random Features

21 May 2023
Isaac Reid
K. Choromanski
Adrian Weller
ArXivPDFHTML
Abstract

We present a novel mechanism to improve the accuracy of the recently-introduced class of graph random features (GRFs). Our method induces negative correlations between the lengths of the algorithm's random walks by imposing antithetic termination: a procedure to sample more diverse random walks which may be of independent interest. It has a trivial drop-in implementation. We derive strong theoretical guarantees on the properties of these quasi-Monte Carlo GRFs (q-GRFs), proving that they yield lower-variance estimators of the 2-regularised Laplacian kernel under mild conditions. Remarkably, our results hold for any graph topology. We demonstrate empirical accuracy improvements on a variety of tasks including a new practical application: time-efficient approximation of the graph diffusion process. To our knowledge, q-GRFs constitute the first rigorously studied quasi-Monte Carlo scheme for kernels defined on combinatorial objects, inviting new research on correlations between graph random walks.

View on arXiv
Comments on this paper