ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.13778
13
6

Full Resolution Repetition Counting

23 May 2023
Jianing Li
Bowen Chen
Zhiyong Wang
Honghai Liu
ArXivPDFHTML
Abstract

Given an untrimmed video, repetitive actions counting aims to estimate the number of repetitions of class-agnostic actions. To handle the various length of videos and repetitive actions, also optimization challenges in end-to-end video model training, down-sampling is commonly utilized in recent state-of-the-art methods, leading to ignorance of several repetitive samples. In this paper, we attempt to understand repetitive actions from a full temporal resolution view, by combining offline feature extraction and temporal convolution networks. The former step enables us to train repetition counting network without down-sampling while preserving all repetition regardless of the video length and action frequency, and the later network models all frames in a flexible and dynamically expanding temporal receptive field to retrieve all repetitions with a global aspect. We experimentally demonstrate that our method achieves better or comparable performance in three public datasets, i.e., TransRAC, UCFRep and QUVA. We expect this work will encourage our community to think about the importance of full temporal resolution.

View on arXiv
Comments on this paper