ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14032
10
28

Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on Respiratory Sound Classification

23 May 2023
Sangmin Bae
June-Woo Kim
Won-Yang Cho
Hyerim Baek
Soyoun Son
B. Lee
C. Ha
Kyongpil Tae
Sungnyun Kim
Se-Young Yun
ArXivPDFHTML
Abstract

Respiratory sound contains crucial information for the early diagnosis of fatal lung diseases. Since the COVID-19 pandemic, there has been a growing interest in contact-free medical care based on electronic stethoscopes. To this end, cutting-edge deep learning models have been developed to diagnose lung diseases; however, it is still challenging due to the scarcity of medical data. In this study, we demonstrate that the pretrained model on large-scale visual and audio datasets can be generalized to the respiratory sound classification task. In addition, we introduce a straightforward Patch-Mix augmentation, which randomly mixes patches between different samples, with Audio Spectrogram Transformer (AST). We further propose a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space. Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.

View on arXiv
Comments on this paper