ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.14797
16
0

Multi-Abstractive Neural Controller: An Efficient Hierarchical Control Architecture for Interactive Driving

24 May 2023
Xiao Li
Igor Gilitschenski
Guy Rosman
S. Karaman
Daniela Rus
ArXivPDFHTML
Abstract

As learning-based methods make their way from perception systems to planning/control stacks, robot control systems have started to enjoy the benefits that data-driven methods provide. Because control systems directly affect the motion of the robot, data-driven methods, especially black box approaches, need to be used with caution considering aspects such as stability and interpretability. In this paper, we describe a differentiable and hierarchical control architecture. The proposed representation, called \textit{multi-abstractive neural controller}, uses the input image to control the transitions within a novel discrete behavior planner (referred to as the visual automaton generative network, or \textit{vAGN}). The output of a vAGN controls the parameters of a set of dynamic movement primitives which provides the system controls. We train this neural controller with real-world driving data via behavior cloning and show improved explainability, sample efficiency, and similarity to human driving.

View on arXiv
Comments on this paper