ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15153
6
1

MotifRetro: Exploring the Combinability-Consistency Trade-offs in retrosynthesis via Dynamic Motif Editing

20 May 2023
Zhangyang Gao
Xingran Chen
Cheng Tan
Stan Z. Li
ArXivPDFHTML
Abstract

Is there a unified framework for graph-based retrosynthesis prediction? Through analysis of full-, semi-, and non-template retrosynthesis methods, we discovered that they strive to strike an optimal balance between combinability and consistency: \textit{Should atoms be combined as motifs to simplify the molecular editing process, or should motifs be broken down into atoms to reduce the vocabulary and improve predictive consistency?} Recent works have studied several specific cases, while none of them explores different combinability-consistency trade-offs. Therefore, we propose MotifRetro, a dynamic motif editing framework for retrosynthesis prediction that can explore the entire trade-off space and unify graph-based models. MotifRetro comprises two components: RetroBPE, which controls the combinability-consistency trade-off, and a motif editing model, where we introduce a novel LG-EGAT module to dynamiclly add motifs to the molecule. We conduct extensive experiments on USPTO-50K to explore how the trade-off affects the model performance and finally achieve state-of-the-art performance.

View on arXiv
Comments on this paper