ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15233
6
3

Cross-lingual QA: A Key to Unlocking In-context Cross-lingual Performance

24 May 2023
SunKyoung Kim
Dayeon Ki
Yireun Kim
Jinsik Lee
    LRM
ArXivPDFHTML
Abstract

Multilingual large language models (MLLMs) have demonstrated significant cross-lingual capabilities through in-context learning. Existing approaches typically construct monolingual in-context examples, either in the source or target language. However, translating entire in-context examples into the target language might compromise contextual integrity and be costly in the case of long-context passages. To address this, we introduce Cross-lingual QA, a cross-lingual prompting method that translates only the question and answer parts, thus reducing translation costs. Experiments on four typologically diverse multilingual benchmarks show that Cross-lingual QA prompting effectively stimulates models to elicit their cross-lingual knowledge, outperforming prior monolingual prompting approaches. Furthermore, we show that prompting open-source MLLMs with cross-lingual in-context examples enhances performance as the model scale increases.

View on arXiv
Comments on this paper