ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.15377
17
19

Uncovering and Quantifying Social Biases in Code Generation

24 May 2023
Y. Liu
Xiaokang Chen
Yan Gao
Zhe Su
Fengji Zhang
Daoguang Zan
Jian-Guang Lou
Pin-Yu Chen
Tsung-Yi Ho
ArXivPDFHTML
Abstract

With the popularity of automatic code generation tools, such as Copilot, the study of the potential hazards of these tools is gaining importance. In this work, we explore the social bias problem in pre-trained code generation models. We propose a new paradigm to construct code prompts and successfully uncover social biases in code generation models. To quantify the severity of social biases in generated code, we develop a dataset along with three metrics to evaluate the overall social bias and fine-grained unfairness across different demographics. Experimental results on three pre-trained code generation models (Codex, InCoder, and CodeGen) with varying sizes, reveal severe social biases. Moreover, we conduct analysis to provide useful insights for further choice of code generation models with low social bias. (This work contains examples that potentially implicate stereotypes, associations, and other harms that could be offensive to individuals in certain social groups.)

View on arXiv
Comments on this paper