ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.16316
25
7

Making Vision Transformers Truly Shift-Equivariant

25 May 2023
Renan A. Rojas-Gomez
Teck-Yian Lim
Minh N. Do
Raymond A. Yeh
    ViT
ArXivPDFHTML
Abstract

For computer vision, Vision Transformers (ViTs) have become one of the go-to deep net architectures. Despite being inspired by Convolutional Neural Networks (CNNs), ViTs' output remains sensitive to small spatial shifts in the input, i.e., not shift invariant. To address this shortcoming, we introduce novel data-adaptive designs for each of the modules in ViTs, such as tokenization, self-attention, patch merging, and positional encoding. With our proposed modules, we achieve true shift-equivariance on four well-established ViTs, namely, Swin, SwinV2, CvT, and MViTv2. Empirically, we evaluate the proposed adaptive models on image classification and semantic segmentation tasks. These models achieve competitive performance across three different datasets while maintaining 100% shift consistency.

View on arXiv
Comments on this paper