ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.16927
84
7

P-CFT: A Privacy-preserving and Crash Fault Tolerant Consensus Algorithm for Permissioned Blockchains

26 May 2023
Wanxin Li
Collin Meese
Mark M. Nejad
Hao Guo
ArXiv (abs)PDFHTML
Abstract

Consensus algorithms play a critical role in blockchains and directly impact their performance. During consensus processing, nodes need to validate and order the pending transactions into a new block, which requires verifying the application-specific data encapsulated within a transaction. This exposes the underlying data to the consensus nodes, presenting privacy concerns. Existing consensus algorithms focus on realizing application security and performance goals, but lack privacy-by-design properties or are resource-heavy and intended for securing permissionless blockchain networks. In this paper, we propose P-CFT, a zero-knowledge and crash fault tolerant consensus algorithm for permissioned blockchains. The proposed consensus algorithm provides inherent data privacy directly to the consensus layer, while still providing guarantees of crash fault tolerance. We conduct experiments using the Hyperledger Ursa cryptographic library, and the results show promise for integrating P-CFT into existing permissioned blockchain systems requiring privacy-preserving and crash fault tolerant features.

View on arXiv
Comments on this paper