8
0

Computing a partition function of a generalized pattern-based energy over a semiring

Abstract

Valued constraint satisfaction problems with ordered variables (VCSPO) are a special case of Valued CSPs in which variables are totally ordered and soft constraints are imposed on tuples of variables that do not violate the order. We study a restriction of VCSPO, in which soft constraints are imposed on a segment of adjacent variables and a constraint language Γ\Gamma consists of {0,1}\{0,1\}-valued characteristic functions of predicates. This kind of potentials generalizes the so-called pattern-based potentials, which were applied in many tasks of structured prediction. For a constraint language Γ\Gamma we introduce a closure operator, ΓΓ \overline{\Gamma^{\cap}}\supseteq \Gamma, and give examples of constraint languages for which Γ|\overline{\Gamma^{\cap}}| is small. If all predicates in Γ\Gamma are cartesian products, we show that the minimization of a generalized pattern-based potential (or, the computation of its partition function) can be made in O(VD2Γ2){\mathcal O}(|V|\cdot |D|^2 \cdot |\overline{\Gamma^{\cap}}|^2 ) time, where VV is a set of variables, DD is a domain set. If, additionally, only non-positive weights of constraints are allowed, the complexity of the minimization task drops to O(VΓDmaxρΓρ2){\mathcal O}(|V|\cdot |\overline{\Gamma^{\cap}}| \cdot |D| \cdot \max_{\rho\in \Gamma}\|\rho\|^2 ) where ρ\|\rho\| is the arity of ρΓ\rho\in \Gamma. For a general language Γ\Gamma and non-positive weights, the minimization task can be carried out in O(VΓ2){\mathcal O}(|V|\cdot |\overline{\Gamma^{\cap}}|^2) time. We argue that in many natural cases Γ\overline{\Gamma^{\cap}} is of moderate size, though in the worst case Γ|\overline{\Gamma^{\cap}}| can blow up and depend exponentially on maxρΓρ\max_{\rho\in \Gamma}\|\rho\|.

View on arXiv
Comments on this paper