ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.17547
13
14

Translatotron 3: Speech to Speech Translation with Monolingual Data

27 May 2023
Eliya Nachmani
Alon Levkovitch
Yi-Yang Ding
Chulayutsh Asawaroengchai
Heiga Zen
Michelle Tadmor Ramanovich
ArXivPDFHTML
Abstract

This paper presents Translatotron 3, a novel approach to unsupervised direct speech-to-speech translation from monolingual speech-text datasets by combining masked autoencoder, unsupervised embedding mapping, and back-translation. Experimental results in speech-to-speech translation tasks between Spanish and English show that Translatotron 3 outperforms a baseline cascade system, reporting 18.1418.1418.14 BLEU points improvement on the synthesized Unpaired-Conversational dataset. In contrast to supervised approaches that necessitate real paired data, or specialized modeling to replicate para-/non-linguistic information such as pauses, speaking rates, and speaker identity, Translatotron 3 showcases its capability to retain it. Audio samples can be found at http://google-research.github.io/lingvo-lab/translatotron3

View on arXiv
Comments on this paper