ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.17760
16
3

Language Models are Bounded Pragmatic Speakers: Understanding RLHF from a Bayesian Cognitive Modeling Perspective

28 May 2023
Khanh Nguyen
    LRM
ArXivPDFHTML
Abstract

How do language models "think"? This paper formulates a probabilistic cognitive model called the bounded pragmatic speaker, which can characterize the operation of different variations of language models. Specifically, we demonstrate that large language models fine-tuned with reinforcement learning from human feedback (Ouyang et al., 2022) embody a model of thought that conceptually resembles a fast-and-slow model (Kahneman, 2011), which psychologists have attributed to humans. We discuss the limitations of reinforcement learning from human feedback as a fast-and-slow model of thought and propose avenues for expanding this framework. In essence, our research highlights the value of adopting a cognitive probabilistic modeling approach to gain insights into the comprehension, evaluation, and advancement of language models.

View on arXiv
Comments on this paper