ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.18045
17
6

Few-shot Class-incremental Audio Classification Using Adaptively-refined Prototypes

29 May 2023
Wei-xin Xie
Yanxiong Li
Qianhua He
Wenchang Cao
Tuomas Virtanen
    CLL
ArXivPDFHTML
Abstract

New classes of sounds constantly emerge with a few samples, making it challenging for models to adapt to dynamic acoustic environments. This challenge motivates us to address the new problem of few-shot class-incremental audio classification. This study aims to enable a model to continuously recognize new classes of sounds with a few training samples of new classes while remembering the learned ones. To this end, we propose a method to generate discriminative prototypes and use them to expand the model's classifier for recognizing sounds of new and learned classes. The model is first trained with a random episodic training strategy, and then its backbone is used to generate the prototypes. A dynamic relation projection module refines the prototypes to enhance their discriminability. Results on two datasets (derived from the corpora of Nsynth and FSD-MIX-CLIPS) show that the proposed method exceeds three state-of-the-art methods in average accuracy and performance dropping rate.

View on arXiv
Comments on this paper