ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19992
174
1

A Nested Matrix-Tensor Model for Noisy Multi-view Clustering

31 May 2023
Abdalgader Abubaker
Mastane Achab
Henrique X. Goulart
Merouane Debbah
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose a nested matrix-tensor model which extends the spiked rank-one tensor model of order three. This model is particularly motivated by a multi-view clustering problem in which multiple noisy observations of each data point are acquired, with potentially non-uniform variances along the views. In this case, data can be naturally represented by an order-three tensor where the views are stacked. Given such a tensor, we consider the estimation of the hidden clusters via performing a best rank-one tensor approximation. In order to study the theoretical performance of this approach, we characterize the behavior of this best rank-one approximation in terms of the alignments of the obtained component vectors with the hidden model parameter vectors, in the large-dimensional regime. In particular, we show that our theoretical results allow us to anticipate the exact accuracy of the proposed clustering approach. Furthermore, numerical experiments indicate that leveraging our tensor-based approach yields better accuracy compared to a naive unfolding-based algorithm which ignores the underlying low-rank tensor structure. Our analysis unveils unexpected and non-trivial phase transition phenomena depending on the model parameters, ``interpolating'' between the typical behavior observed for the spiked matrix and tensor models.

View on arXiv
Comments on this paper