ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.00353
16
1

Constructing Semantics-Aware Adversarial Examples with Probabilistic Perspective

1 June 2023
Andi Zhang
Mingtian Zhang
Damon J. Wischik
    GAN
    AAML
ArXivPDFHTML
Abstract

We propose a probabilistic perspective on adversarial examples. This perspective allows us to view geometric restrictions on adversarial examples as distributions, enabling a seamless shift towards data-driven, semantic constraints. Building on this foundation, we present a method for creating semantics-aware adversarial examples in a principle way. Leveraging the advanced generalization capabilities of contemporary probabilistic generative models, our method produces adversarial perturbations that maintain the original image's semantics. Moreover, it offers users the flexibility to inject their own understanding of semantics into the adversarial examples. Our empirical findings indicate that the proposed methods achieve enhanced transferability and higher success rates in circumventing adversarial defense mechanisms, while maintaining a low detection rate by human observers.

View on arXiv
Comments on this paper