ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.00858
14
0

Adversarial learning of neural user simulators for dialogue policy optimisation

1 June 2023
Simon Keizer
Caroline Dockes
N. Braunschweiler
Svetlana Stoyanchev
R. Doddipatla
ArXivPDFHTML
Abstract

Reinforcement learning based dialogue policies are typically trained in interaction with a user simulator. To obtain an effective and robust policy, this simulator should generate user behaviour that is both realistic and varied. Current data-driven simulators are trained to accurately model the user behaviour in a dialogue corpus. We propose an alternative method using adversarial learning, with the aim to simulate realistic user behaviour with more variation. We train and evaluate several simulators on a corpus of restaurant search dialogues, and then use them to train dialogue system policies. In policy cross-evaluation experiments we demonstrate that an adversarially trained simulator produces policies with 8.3% higher success rate than those trained with a maximum likelihood simulator. Subjective results from a crowd-sourced dialogue system user evaluation confirm the effectiveness of adversarially training user simulators.

View on arXiv
Comments on this paper