ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.01179
16
2

The Benefits of Interaction Constraints in Distributed Autonomous Systems

1 June 2023
Michael Crosscombe
J. Lawry
ArXiv (abs)PDFHTML
Abstract

The design of distributed autonomous systems often omits consideration of the underlying network dynamics. Recent works in multi-agent systems and swarm robotics alike have highlighted the impact that the interactions between agents have on the collective behaviours exhibited by the system. In this paper, we seek to highlight the role that the underlying interaction network plays in determining the performance of the collective behaviour of a system, comparing its impact with that of the physical network. We contextualise this by defining a collective learning problem in which agents must reach a consensus about their environment in the presence of noisy information. We show that the physical connectivity of the agents plays a less important role than when an interaction network of limited connectivity is imposed on the system to constrain agent communication. Constraining agent interactions in this way drastically improves the performance of the system in a collective learning context. Additionally, we provide further evidence for the idea that `less is more' when it comes to propagating information in distributed autonomous systems for the purpose of collective learning.

View on arXiv
Comments on this paper