ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.01890
14
2
v1v2 (latest)

Kernel Metric Learning for Clustering Mixed-type Data

2 June 2023
Jesse S. Ghashti
John R.J. Thompson
ArXiv (abs)PDFHTML
Abstract

Distance-based clustering and classification are widely used in various fields to group mixed numeric and categorical data. A predefined distance measurement is used to cluster data points based on their dissimilarity. While there exist numerous distance-based measures for data with pure numerical attributes and several ordered and unordered categorical metrics, an optimal distance for mixed-type data is an open problem. Many metrics convert numerical attributes to categorical ones or vice versa. They handle the data points as a single attribute type or calculate a distance between each attribute separately and add them up. We propose a metric that uses mixed kernels to measure dissimilarity, with cross-validated optimal kernel bandwidths. Our approach improves clustering accuracy when utilized for existing distance-based clustering algorithms on simulated and real-world datasets containing pure continuous, categorical, and mixed-type data.

View on arXiv
Comments on this paper