ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02306
15
2

Cross-CBAM: A Lightweight network for Scene Segmentation

4 June 2023
Zheng-Wei Zhang
Zhenhao Xu
Xingsheng Gu
Juan Xiong
ArXivPDFHTML
Abstract

Scene parsing is a great challenge for real-time semantic segmentation. Although traditional semantic segmentation networks have made remarkable leap-forwards in semantic accuracy, the performance of inference speed is unsatisfactory. Meanwhile, this progress is achieved with fairly large networks and powerful computational resources. However, it is difficult to run extremely large models on edge computing devices with limited computing power, which poses a huge challenge to the real-time semantic segmentation tasks. In this paper, we present the Cross-CBAM network, a novel lightweight network for real-time semantic segmentation. Specifically, a Squeeze-and-Excitation Atrous Spatial Pyramid Pooling Module(SE-ASPP) is proposed to get variable field-of-view and multiscale information. And we propose a Cross Convolutional Block Attention Module(CCBAM), in which a cross-multiply operation is employed in the CCBAM module to make high-level semantic information guide low-level detail information. Different from previous work, these works use attention to focus on the desired information in the backbone. CCBAM uses cross-attention for feature fusion in the FPN structure. Extensive experiments on the Cityscapes dataset and Camvid dataset demonstrate the effectiveness of the proposed Cross-CBAM model by achieving a promising trade-off between segmentation accuracy and inference speed. On the Cityscapes test set, we achieve 73.4% mIoU with a speed of 240.9FPS and 77.2% mIoU with a speed of 88.6FPS on NVIDIA GTX 1080Ti.

View on arXiv
Comments on this paper