ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02623
22
2

Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models

5 June 2023
Jiabang He
Yilang Hu
Lei Wang
Xingdong Xu
Ning Liu
Hui-juan Liu
Hengtao Shen
    VLM
    OOD
ArXivPDFHTML
Abstract

Numerous pre-training techniques for visual document understanding (VDU) have recently shown substantial improvements in performance across a wide range of document tasks. However, these pre-trained VDU models cannot guarantee continued success when the distribution of test data differs from the distribution of training data. In this paper, to investigate how robust existing pre-trained VDU models are to various distribution shifts, we first develop an out-of-distribution (OOD) benchmark termed Do-GOOD for the fine-Grained analysis on Document image-related tasks specifically. The Do-GOOD benchmark defines the underlying mechanisms that result in different distribution shifts and contains 9 OOD datasets covering 3 VDU related tasks, e.g., document information extraction, classification and question answering. We then evaluate the robustness and perform a fine-grained analysis of 5 latest VDU pre-trained models and 2 typical OOD generalization algorithms on these OOD datasets. Results from the experiments demonstrate that there is a significant performance gap between the in-distribution (ID) and OOD settings for document images, and that fine-grained analysis of distribution shifts can reveal the brittle nature of existing pre-trained VDU models and OOD generalization algorithms. The code and datasets for our Do-GOOD benchmark can be found at https://github.com/MAEHCM/Do-GOOD.

View on arXiv
Comments on this paper