ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02978
14
7

Which Argumentative Aspects of Hate Speech in Social Media can be reliably identified?

5 June 2023
D. Furman
Pablo E. Torres
José Raúl Rodríguez Rodríguez
Diego Letzen
María Vanina Martínez
Laura Alonso Alemany
ArXivPDFHTML
Abstract

With the increasing diversity of use cases of large language models, a more informative treatment of texts seems necessary. An argumentative analysis could foster a more reasoned usage of chatbots, text completion mechanisms or other applications. However, it is unclear which aspects of argumentation can be reliably identified and integrated in language models. In this paper, we present an empirical assessment of the reliability with which different argumentative aspects can be automatically identified in hate speech in social media. We have enriched the Hateval corpus (Basile et al. 2019) with a manual annotation of some argumentative components, adapted from Wagemans (2016)'s Periodic Table of Arguments. We show that some components can be identified with reasonable reliability. For those that present a high error ratio, we analyze the patterns of disagreement between expert annotators and errors in automatic procedures, and we propose adaptations of those categories that can be more reliably reproduced.

View on arXiv
Comments on this paper