171

Score-based Enhanced Sampling for Protein Molecular Dynamics

International Conference on Learning Representations (ICLR), 2023
Abstract

The dynamic nature of proteins is crucial for determining their biological functions and properties, and molecular dynamics (MD) simulations stand as a predominant tool to study such phenomena. By utilizing empirically derived force fields, MD simulations explore the conformational space through numerically evolving the system along MD trajectories. However, the high-energy barrier of the force fields can hamper the exploration of MD, resulting in inadequately sampled ensemble. In this paper, we propose leveraging score-based generative models (SGMs) trained on general protein structures to perform protein conformational sampling to complement traditional MD simulations. We argue that SGMs can provide a novel framework as an alternative to traditional enhanced sampling methods by learning multi-level score functions, which directly sample a diversity-controllable ensemble of conformations. We demonstrate the effectiveness of our approach on several benchmark systems by comparing the results with long MD trajectories and state-of-the-art generative structure prediction models. Our framework provides new insights that SGMs have the potential to serve as an efficient and simulation-free methods to study protein dynamics.

View on arXiv
Comments on this paper