ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.03588
40
0
v1v2v3v4 (latest)

Convergence properties of multi-environment causal regularization

6 June 2023
Philip Kennerberg
Ernst C. Wit
ArXiv (abs)PDFHTML
Abstract

Causal regularization was introduced as a stable causal inference strategy in a two-environment setting in \cite{kania2022causal}. We start with observing that causal regularizer can be extended to several shifted environments. We derive the multi-environment casual regularizer in the population setting. We propose its plug-in estimator, and study its concentration in measure behavior. Although the variance of the plug-in estimator is not well-defined in general, we instead study its conditional variance both with respect to a natural filtration of the empirical as well as conditioning with respect to certain events. We also study generalizations where we consider conditional expectations of higher central absolute moments of the estimator. The results presented here are also new in the prior setting of \cite{kania2022causal} as well as in \cite{Rot}.

View on arXiv
Comments on this paper