ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.04096
19
0

An enrichment approach for enhancing the expressivity of neural operators with applications to seismology

7 June 2023
E. Haghighat
U. Waheed
George Karniadakis
ArXivPDFHTML
Abstract

The Eikonal equation plays a central role in seismic wave propagation and hypocenter localization, a crucial aspect of efficient earthquake early warning systems. Despite recent progress, real-time earthquake localization remains challenging due to the need to learn a generalizable Eikonal operator. We introduce a novel deep learning architecture, Enriched-DeepONet (En-DeepONet), addressing the limitations of current operator learning models in dealing with moving-solution operators. Leveraging addition and subtraction operations and a novel `root' network, En-DeepONet is particularly suitable for learning such operators and achieves up to four orders of magnitude improved accuracy without increased training cost. We demonstrate the effectiveness of En-DeepONet in earthquake localization under variable velocity and arrival time conditions. Our results indicate that En-DeepONet paves the way for real-time hypocenter localization for velocity models of practical interest. The proposed method represents a significant advancement in operator learning that is applicable to a gamut of scientific problems, including those in seismology, fracture mechanics, and phase-field problems.

View on arXiv
Comments on this paper