ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.05052
8
16

Interpretable Medical Diagnostics with Structured Data Extraction by Large Language Models

8 June 2023
Aleksa Bisercic
Mladen Nikolic
M. Schaar
Boris Delibasic
Pietro Lió
Andrija Petrović
ArXivPDFHTML
Abstract

Tabular data is often hidden in text, particularly in medical diagnostic reports. Traditional machine learning (ML) models designed to work with tabular data, cannot effectively process information in such form. On the other hand, large language models (LLMs) which excel at textual tasks, are probably not the best tool for modeling tabular data. Therefore, we propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM. Drawing upon the reasoning capabilities of LLMs, TEMED-LLM goes beyond traditional extraction techniques, accurately inferring tabular features, even when their names are not explicitly mentioned in the text. This is achieved by combining domain-specific reasoning guidelines with a proposed data validation and reasoning correction feedback loop. By applying interpretable ML models such as decision trees and logistic regression over the extracted and validated data, we obtain end-to-end interpretable predictions. We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics. Given its predictive performance, simplicity, and interpretability, TEMED-LLM underscores the potential of leveraging LLMs to improve the performance and trustworthiness of ML models in medical applications.

View on arXiv
Comments on this paper