ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.05279
23
4

Language-specific Acoustic Boundary Learning for Mandarin-English Code-switching Speech Recognition

8 June 2023
Zhiyun Fan
Linhao Dong
Chen Shen
Zhenlin Liang
Jun Zhang
Lu Lu
Zejun Ma
ArXivPDFHTML
Abstract

Code-switching speech recognition (CSSR) transcribes speech that switches between multiple languages or dialects within a single sentence. The main challenge in this task is that different languages often have similar pronunciations, making it difficult for models to distinguish between them. In this paper, we propose a method for solving the CSSR task from the perspective of language-specific acoustic boundary learning. We introduce language-specific weight estimators (LSWE) to model acoustic boundary learning in different languages separately. Additionally, a non-autoregressive (NAR) decoder and a language change detection (LCD) module are employed to assist in training. Evaluated on the SEAME corpus, our method achieves a state-of-the-art mixed error rate (MER) of 16.29% and 22.81% on the test_man and test_sge sets. We also demonstrate the effectiveness of our method on a 9000-hour in-house meeting code-switching dataset, where our method achieves a relatively 7.9% MER reduction.

View on arXiv
Comments on this paper