359
v1v2v3v4 (latest)

Ordinal Potential-based Player Rating

International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Abstract

It was recently observed that Elo ratings fail at preserving transitive relations among strategies and therefore cannot correctly extract the transitive component of a game. We provide a characterization of transitive games as a weak variant of ordinal potential games and show that Elo ratings actually do preserve transitivity when computed in the right space, using suitable invertible mappings. Leveraging this insight, we introduce a new game decomposition of an arbitrary game into transitive and cyclic components that is learnt using a neural network-based architecture and that prioritises capturing the sign pattern of the game, namely transitive and cyclic relations among strategies. We link our approach to the known concept of sign-rank, and evaluate our methodology using both toy examples and empirical data from real-world games.

View on arXiv
Comments on this paper