ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.06844
22
1

Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation

12 June 2023
Huong Ha
Vu-Linh Nguyen
Hung Tran-The
Hongyu Zhang
Xiuzhen Zhang
A. Hengel
ArXivPDFHTML
Abstract

Gaussian process (GP) based Bayesian optimization (BO) is a powerful method for optimizing black-box functions efficiently. The practical performance and theoretical guarantees of this approach depend on having the correct GP hyperparameter values, which are usually unknown in advance and need to be estimated from the observed data. However, in practice, these estimations could be incorrect due to biased data sampling strategies used in BO. This can lead to degraded performance and break the sub-linear global convergence guarantee of BO. To address this issue, we propose a new BO method that can sub-linearly converge to the objective function's global optimum even when the true GP hyperparameters are unknown in advance and need to be estimated from the observed data. Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process, and employs a novel training loss function for the GP hyperparameter estimation process that ensures consistent estimation. We further provide theoretical analysis of our proposed method. Finally, we demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.

View on arXiv
Comments on this paper