ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07119
16
3

Improving Forecasts for Heterogeneous Time Series by "Averaging", with Application to Food Demand Forecast

12 June 2023
L. Neubauer
Peter Filzmoser
    AI4TS
ArXivPDFHTML
Abstract

A common forecasting setting in real world applications considers a set of possibly heterogeneous time series of the same domain. Due to different properties of each time series such as length, obtaining forecasts for each individual time series in a straight-forward way is challenging. This paper proposes a general framework utilizing a similarity measure in Dynamic Time Warping to find similar time series to build neighborhoods in a k-Nearest Neighbor fashion, and improve forecasts of possibly simple models by averaging. Several ways of performing the averaging are suggested, and theoretical arguments underline the usefulness of averaging for forecasting. Additionally, diagnostics tools are proposed allowing a deep understanding of the procedure.

View on arXiv
Comments on this paper