ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07879
8
16

Rethinking pose estimation in crowds: overcoming the detection information-bottleneck and ambiguity

13 June 2023
Mu Zhou
Lucas Stoffl
Mackenzie W. Mathis
Alexander Mathis
    VOT
ArXivPDFHTML
Abstract

Frequent interactions between individuals are a fundamental challenge for pose estimation algorithms. Current pipelines either use an object detector together with a pose estimator (top-down approach), or localize all body parts first and then link them to predict the pose of individuals (bottom-up). Yet, when individuals closely interact, top-down methods are ill-defined due to overlapping individuals, and bottom-up methods often falsely infer connections to distant bodyparts. Thus, we propose a novel pipeline called bottom-up conditioned top-down pose estimation (BUCTD) that combines the strengths of bottom-up and top-down methods. Specifically, we propose to use a bottom-up model as the detector, which in addition to an estimated bounding box provides a pose proposal that is fed as condition to an attention-based top-down model. We demonstrate the performance and efficiency of our approach on animal and human pose estimation benchmarks. On CrowdPose and OCHuman, we outperform previous state-of-the-art models by a significant margin. We achieve 78.5 AP on CrowdPose and 48.5 AP on OCHuman, an improvement of 8.6% and 7.8% over the prior art, respectively. Furthermore, we show that our method strongly improves the performance on multi-animal benchmarks involving fish and monkeys. The code is available at https://github.com/amathislab/BUCTD

View on arXiv
Comments on this paper