ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08274
11
0

A Simple and Scalable Graph Neural Network for Large Directed Graphs

14 June 2023
Seiji Maekawa
Yuya Sasaki
Makoto Onizuka
    GNN
ArXivPDFHTML
Abstract

Node classification is one of the hottest tasks in graph analysis. Though existing studies have explored various node representations in directed and undirected graphs, they have overlooked the distinctions of their capabilities to capture the information of graphs. To tackle the limitation, we investigate various combinations of node representations (aggregated features vs. adjacency lists) and edge direction awareness within an input graph (directed vs. undirected). We address the first empirical study to benchmark the performance of various GNNs that use either combination of node representations and edge direction awareness. Our experiments demonstrate that no single combination stably achieves state-of-the-art results across datasets, which indicates that we need to select appropriate combinations depending on the dataset characteristics. In response, we propose a simple yet holistic classification method A2DUG which leverages all combinations of node representations in directed and undirected graphs. We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods. To spur the development of new methods, we publicly release our complete codebase under the MIT license.

View on arXiv
Comments on this paper