ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08280
23
1

Differentially Private Wireless Federated Learning Using Orthogonal Sequences

14 June 2023
Xizixiang Wei
Tianhao Wang
Ruiquan Huang
Cong Shen
Jing Yang
H. Vincent Poor
ArXivPDFHTML
Abstract

We propose a privacy-preserving uplink over-the-air computation (AirComp) method, termed FLORAS, for single-input single-output (SISO) wireless federated learning (FL) systems. From the perspective of communication designs, FLORAS eliminates the requirement of channel state information at the transmitters (CSIT) by leveraging the properties of orthogonal sequences. From the privacy perspective, we prove that FLORAS offers both item-level and client-level differential privacy (DP) guarantees. Moreover, by properly adjusting the system parameters, FLORAS can flexibly achieve different DP levels at no additional cost. A new FL convergence bound is derived which, combined with the privacy guarantees, allows for a smooth tradeoff between the achieved convergence rate and differential privacy levels. Experimental results demonstrate the advantages of FLORAS compared with the baseline AirComp method, and validate that the analytical results can guide the design of privacy-preserving FL with different tradeoff requirements on the model convergence and privacy levels.

View on arXiv
Comments on this paper