ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08293
20
1

Efficient Training of Physics-Informed Neural Networks with Direct Grid Refinement Algorithm

14 June 2023
Shikhar Nilabh
F. Grandia
ArXivPDFHTML
Abstract

This research presents the development of an innovative algorithm tailored for the adaptive sampling of residual points within the framework of Physics-Informed Neural Networks (PINNs). By addressing the limitations inherent in existing adaptive sampling techniques, our proposed methodology introduces a direct mesh refinement approach that effectively ensures both computational efficiency and adaptive point placement. Verification studies were conducted to evaluate the performance of our algorithm, showcasing reasonable agreement between the model based on our novel approach and benchmark model results. Comparative analyses with established adaptive resampling techniques demonstrated the superior performance of our approach, particularly when implemented with higher refinement factor. Overall, our findings highlight the enhancement of simulation accuracy achievable through the application of our adaptive sampling algorithm for Physics-Informed Neural Networks.

View on arXiv
Comments on this paper