ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08592
23
5

Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators

14 June 2023
B. Leimkuhler
Daniel Paulin
P. Whalley
ArXivPDFHTML
Abstract

In previous work, we introduced a method for determining convergence rates for integration methods for the kinetic Langevin equation for MMM-∇\nabla∇Lipschitz mmm-log-concave densities [arXiv:2302.10684, 2023]. In this article, we exploit this method to treat several additional schemes including the method of Brunger, Brooks and Karplus (BBK) and stochastic position/velocity Verlet. We introduce a randomized midpoint scheme for kinetic Langevin dynamics, inspired by the recent scheme of Bou-Rabee and Marsden [arXiv:2211.11003, 2022]. We also extend our approach to stochastic gradient variants of these schemes under minimal extra assumptions. We provide convergence rates of O(m/M)\mathcal{O}(m/M)O(m/M), with explicit stepsize restriction, which are of the same order as the stability thresholds for Gaussian targets and are valid for a large interval of the friction parameter. We compare the contraction rate estimates of many kinetic Langevin integrators from molecular dynamics and machine learning. Finally we present numerical experiments for a Bayesian logistic regression example.

View on arXiv
Comments on this paper