ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.08956
17
2

Multi-Loss Convolutional Network with Time-Frequency Attention for Speech Enhancement

15 June 2023
Liang Wan
Hongqing Liu
Yi Zhou
Jie Ji
ArXivPDFHTML
Abstract

The Dual-Path Convolution Recurrent Network (DPCRN) was proposed to effectively exploit time-frequency domain information. By combining the DPRNN module with Convolution Recurrent Network (CRN), the DPCRN obtained a promising performance in speech separation with a limited model size. In this paper, we explore self-attention in the DPCRN module and design a model called Multi-Loss Convolutional Network with Time-Frequency Attention(MNTFA) for speech enhancement. We use self-attention modules to exploit the long-time information, where the intra-chunk self-attentions are used to model the spectrum pattern and the inter-chunk self-attention are used to model the dependence between consecutive frames. Compared to DPRNN, axial self-attention greatly reduces the need for memory and computation, which is more suitable for long sequences of speech signals. In addition, we propose a joint training method of a multi-resolution STFT loss and a WavLM loss using a pre-trained WavLM network. Experiments show that with only 0.23M parameters, the proposed model achieves a better performance than DPCRN.

View on arXiv
Comments on this paper