ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.10621
11
0

UniSG^GA: A 3D scenegraph powered by Geometric Algebra unifying geometry, behavior and GNNs towards generative AI

18 June 2023
Manos N. Kamarianakis
Antonis I Protopsaltis
Dimitris Angelís
Paul Zikas
Mike Kentros
George Papagiannakis
ArXivPDFHTML
Abstract

This work presents the introduction of UniSG^GA, a novel integrated scenegraph structure, that to incorporates behavior and geometry data on a 3D scene. It is specifically designed to seamlessly integrate Graph Neural Networks (GNNs) and address the challenges associated with transforming a 3D scenegraph (3D-SG) during generative tasks. To effectively capture and preserve the topological relationships between objects in a simplified way, within the graph representation, we propose UniSG^GA, that seamlessly integrates Geometric Algebra (GA) forms. This novel approach enhances the overall performance and capability of GNNs in handling generative and predictive tasks, opening up new possibilities and aiming to lay the foundation for further exploration and development of graph-based generative AI models that can effectively incorporate behavior data for enhanced scene generation and synthesis.

View on arXiv
Comments on this paper