ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.11180
41
9

Hyperbolic Active Learning for Semantic Segmentation under Domain Shift

19 June 2023
Luca Franco
Paolo Mandica
Konstantinos Kallidromitis
Devin Guillory
Yu-Teng Li
Trevor Darrell
Fabio Galasso
ArXivPDFHTML
Abstract

We introduce a hyperbolic neural network approach to pixel-level active learning for semantic segmentation. Analysis of the data statistics leads to a novel interpretation of the hyperbolic radius as an indicator of data scarcity. In HALO (Hyperbolic Active Learning Optimization), for the first time, we propose the use of epistemic uncertainty as a data acquisition strategy, following the intuition of selecting data points that are the least known. The hyperbolic radius, complemented by the widely-adopted prediction entropy, effectively approximates epistemic uncertainty. We perform extensive experimental analysis based on two established synthetic-to-real benchmarks, i.e. GTAV →\rightarrow→ Cityscapes and SYNTHIA →\rightarrow→ Cityscapes. Additionally, we test HALO on Cityscape →\rightarrow→ ACDC for domain adaptation under adverse weather conditions, and we benchmark both convolutional and attention-based backbones. HALO sets a new state-of-the-art in active learning for semantic segmentation under domain shift and it is the first active learning approach that surpasses the performance of supervised domain adaptation while using only a small portion of labels (i.e., 1%).

View on arXiv
Comments on this paper