ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.11260
19
0

A Novel Counterfactual Data Augmentation Method for Aspect-Based Sentiment Analysis

20 June 2023
Dongming Wu
Lulu Wen
Chao Chen
Zhaoshu Shi
ArXivPDFHTML
Abstract

Aspect-based-sentiment-analysis (ABSA) is a fine-grained sentiment evaluation task, which analyzes the emotional polarity of the evaluation aspects. Generally, the emotional polarity of an aspect exists in the corresponding opinion expression, whose diversity has great impact on model's performance. To mitigate this problem, we propose a novel and simple counterfactual data augmentation method to generate opinion expressions with reversed sentiment polarity. In particular, the integrated gradients are calculated to locate and mask the opinion expression. Then, a prompt combined with the reverse expression polarity is added to the original text, and a Pre-trained language model (PLM), T5, is finally was employed to predict the masks. The experimental results shows the proposed counterfactual data augmentation method performs better than current augmentation methods on three ABSA datasets, i.e. Laptop, Restaurant, and MAMS.

View on arXiv
Comments on this paper