ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.13929
17
2

Evaluating the Utility of GAN Generated Synthetic Tabular Data for Class Balancing and Low Resource Settings

24 June 2023
Nagarjuna Chereddy
B. Bolla
ArXivPDFHTML
Abstract

The present study aimed to address the issue of imbalanced data in classification tasks and evaluated the suitability of SMOTE, ADASYN, and GAN techniques in generating synthetic data to address the class imbalance and improve the performance of classification models in low-resource settings. The study employed the Generalised Linear Model (GLM) algorithm for class balancing experiments and the Random Forest (RF) algorithm for low-resource setting experiments to assess model performance under varying training data. The recall metric was the primary evaluation metric for all classification models. The results of the class balancing experiments showed that the GLM model trained on GAN-balanced data achieved the highest recall value. Similarly, in low-resource experiments, models trained on data enhanced with GAN-synthesized data exhibited better recall values than original data. These findings demonstrate the potential of GAN-generated synthetic data for addressing the challenge of imbalanced data in classification tasks and improving model performance in low-resource settings.

View on arXiv
Comments on this paper