ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14590
9
5

CST-YOLO: A Novel Method for Blood Cell Detection Based on Improved YOLOv7 and CNN-Swin Transformer

26 June 2023
Ming Kang
C. Ting
F. F. Ting
Raphaël C.-W. Phan
    ViT
ArXivPDFHTML
Abstract

Blood cell detection is a typical small-scale object detection problem in computer vision. In this paper, we propose a CST-YOLO model for blood cell detection based on YOLOv7 architecture and enhance it with the CNN-Swin Transformer (CST), which is a new attempt at CNN-Transformer fusion. We also introduce three other useful modules: Weighted Efficient Layer Aggregation Networks (W-ELAN), Multiscale Channel Split (MCS), and Concatenate Convolutional Layers (CatConv) in our CST-YOLO to improve small-scale object detection precision. Experimental results show that the proposed CST-YOLO achieves 92.7, 95.6, and 91.1 mAP@0.5 respectively on three blood cell datasets, outperforming state-of-the-art object detectors, e.g., YOLOv5 and YOLOv7. Our code is available at https://github.com/mkang315/CST-YOLO.

View on arXiv
Comments on this paper