ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14816
23
1

Experiments with Detecting and Mitigating AI Deception

26 June 2023
Ismail Sahbane
Francis Rhys Ward
Henrik ˚Aslund
ArXivPDFHTML
Abstract

How to detect and mitigate deceptive AI systems is an open problem for the field of safe and trustworthy AI. We analyse two algorithms for mitigating deception: The first is based on the path-specific objectives framework where paths in the game that incentivise deception are removed. The second is based on shielding, i.e., monitoring for unsafe policies and replacing them with a safe reference policy. We construct two simple games and evaluate our algorithms empirically. We find that both methods ensure that our agent is not deceptive, however, shielding tends to achieve higher reward.

View on arXiv
Comments on this paper