ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.15228
23
3

IIFL: Implicit Interactive Fleet Learning from Heterogeneous Human Supervisors

27 June 2023
Gaurav Datta
Ryan Hoque
Anrui Gu
Eugen Solowjow
Ken Goldberg
ArXivPDFHTML
Abstract

Imitation learning has been applied to a range of robotic tasks, but can struggle when robots encounter edge cases that are not represented in the training data (i.e., distribution shift). Interactive fleet learning (IFL) mitigates distribution shift by allowing robots to access remote human supervisors during task execution and learn from them over time, but different supervisors may demonstrate the task in different ways. Recent work proposes Implicit Behavior Cloning (IBC), which is able to represent multimodal demonstrations using energy-based models (EBMs). In this work, we propose Implicit Interactive Fleet Learning (IIFL), an algorithm that builds on IBC for interactive imitation learning from multiple heterogeneous human supervisors. A key insight in IIFL is a novel approach for uncertainty quantification in EBMs using Jeffreys divergence. While IIFL is more computationally expensive than explicit methods, results suggest that IIFL achieves a 2.8x higher success rate in simulation experiments and a 4.5x higher return on human effort in a physical block pushing task over (Explicit) IFL, IBC, and other baselines.

View on arXiv
Comments on this paper