ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.15736
11
2

DMNER: Biomedical Entity Recognition by Detection and Matching

27 June 2023
Junyi Bian
Rongze Jiang
W. Zhai
Tianyang Huang
Hong Zhou
Shanfeng Zhu
ArXivPDFHTML
Abstract

Biomedical named entity recognition (BNER) serves as the foundation for numerous biomedical text mining tasks. Unlike general NER, BNER require a comprehensive grasp of the domain, and incorporating external knowledge beyond training data poses a significant challenge. In this study, we propose a novel BNER framework called DMNER. By leveraging existing entity representation models SAPBERT, we tackle BNER as a two-step process: entity boundary detection and biomedical entity matching. DMNER exhibits applicability across multiple NER scenarios: 1) In supervised NER, we observe that DMNER effectively rectifies the output of baseline NER models, thereby further enhancing performance. 2) In distantly supervised NER, combining MRC and AutoNER as span boundary detectors enables DMNER to achieve satisfactory results. 3) For training NER by merging multiple datasets, we adopt a framework similar to DS-NER but additionally leverage ChatGPT to obtain high-quality phrases in the training. Through extensive experiments conducted on 10 benchmark datasets, we demonstrate the versatility and effectiveness of DMNER.

View on arXiv
Comments on this paper