ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.15891
12
6

Capturing the Diffusive Behavior of the Multiscale Linear Transport Equations by Asymptotic-Preserving Convolutional DeepONets

28 June 2023
Keke Wu
Xiongbin Yan
Shi Jin
Zheng Ma
ArXivPDFHTML
Abstract

In this paper, we introduce two types of novel Asymptotic-Preserving Convolutional Deep Operator Networks (APCONs) designed to address the multiscale time-dependent linear transport problem. We observe that the vanilla physics-informed DeepONets with modified MLP may exhibit instability in maintaining the desired limiting macroscopic behavior. Therefore, this necessitates the utilization of an asymptotic-preserving loss function. Drawing inspiration from the heat kernel in the diffusion equation, we propose a new architecture called Convolutional Deep Operator Networks, which employ multiple local convolution operations instead of a global heat kernel, along with pooling and activation operations in each filter layer. Our APCON methods possess a parameter count that is independent of the grid size and are capable of capturing the diffusive behavior of the linear transport problem. Finally, we validate the effectiveness of our methods through several numerical examples.

View on arXiv
Comments on this paper