ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.16068
50
2

Joint structure learning and causal effect estimation for categorical graphical models

28 June 2023
F. Castelletti
G. Consonni
Marco L. Della Vedova
    CML
ArXiv (abs)PDFHTML
Abstract

We consider a a collection of categorical random variables. Of special interest is the causal effect on an outcome variable following an intervention on another variable. Conditionally on a Directed Acyclic Graph (DAG), we assume that the joint law of the random variables can be factorized according to the DAG, where each term is a categorical distribution for the node-variable given a configuration of its parents. The graph is equipped with a causal interpretation through the notion of interventional distribution and the allied "do-calculus". From a modeling perspective, the likelihood is decomposed into a product over nodes and parents of DAG-parameters, on which a suitably specified collection of Dirichlet priors is assigned. The overall joint distribution on the ensemble of DAG-parameters is then constructed using global and local independence. We account for DAG-model uncertainty and propose a reversible jump Markov Chain Monte Carlo (MCMC) algorithm which targets the joint posterior over DAGs and DAG-parameters; from the output we are able to recover a full posterior distribution of any causal effect coefficient of interest, possibly summarized by a Bayesian Model Averaging (BMA) point estimate. We validate our method through extensive simulation studies, wherein comparisons with alternative state-of-the-art procedures reveal an outperformance in terms of estimation accuracy. Finally, we analyze a dataset relative to a study on depression and anxiety in undergraduate students.

View on arXiv
Comments on this paper