Age estimation of face images is a crucial task with various practical applications in areas such as video surveillance and Internet access control. While deep learning-based age estimation frameworks, e.g., convolutional neural network (CNN), multi-layer perceptrons (MLP), and transformers have shown remarkable performance, they have limitations when modelling complex or irregular objects in an image that contains a large amount of redundant information. To address this issue, this paper utilizes the robustness property of graph representation learning in dealing with image redundancy information and proposes a novel Masked Contrastive Graph Representation Learning (MCGRL) method for age estimation. Specifically, our approach first leverages CNN to extract semantic features of the image, which are then partitioned into patches that serve as nodes in the graph. Then, we use a masked graph convolutional network (GCN) to derive image-based node representations that capture rich structural information. Finally, we incorporate multiple losses to explore the complementary relationship between structural information and semantic features, which improves the feature representation capability of GCN. Experimental results on real-world face image datasets demonstrate the superiority of our proposed method over other state-of-the-art age estimation approaches.
View on arXiv