ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00037
13
4

MARF: The Medial Atom Ray Field Object Representation

30 June 2023
Peder Bergebakken Sundt
T. Theoharis
ArXivPDFHTML
Abstract

We propose Medial Atom Ray Fields (MARFs), a novel neural object representation that enables accurate differentiable surface rendering with a single network evaluation per camera ray. Existing neural ray fields struggle with multi-view consistency and representing surface discontinuities. MARFs address both using a medial shape representation, a dual representation of solid geometry that yields cheap geometrically grounded surface normals, in turn enabling computing analytical curvature despite the network having no second derivative. MARFs map a camera ray to multiple medial intersection candidates, subject to ray-sphere intersection testing. We illustrate how the learned medial shape quantities applies to sub-surface scattering, part segmentation, and aid representing a space of articulated shapes. Able to learn a space of shape priors, MARFs may prove useful for tasks like shape retrieval and shape completion, among others. Code and data can be found at https://github.com/pbsds/MARF.

View on arXiv
Comments on this paper