ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00865
10
10

A Survey on Graph Classification and Link Prediction based on GNN

3 July 2023
Xingyu Liu
Juan Chen
Q. Wen
    GNN
ArXivPDFHTML
Abstract

Traditional convolutional neural networks are limited to handling Euclidean space data, overlooking the vast realm of real-life scenarios represented as graph data, including transportation networks, social networks, and reference networks. The pivotal step in transferring convolutional neural networks to graph data analysis and processing lies in the construction of graph convolutional operators and graph pooling operators. This comprehensive review article delves into the world of graph convolutional neural networks. Firstly, it elaborates on the fundamentals of graph convolutional neural networks. Subsequently, it elucidates the graph neural network models based on attention mechanisms and autoencoders, summarizing their application in node classification, graph classification, and link prediction along with the associated datasets.

View on arXiv
Comments on this paper