ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.03591
23
15

Structure Guided Multi-modal Pre-trained Transformer for Knowledge Graph Reasoning

6 July 2023
K. Liang
Sihang Zhou
Yue Liu
Lingyuan Meng
Meng Liu
Xinwang Liu
ArXivPDFHTML
Abstract

Multimodal knowledge graphs (MKGs), which intuitively organize information in various modalities, can benefit multiple practical downstream tasks, such as recommendation systems, and visual question answering. However, most MKGs are still far from complete, which motivates the flourishing of MKG reasoning models. Recently, with the development of general artificial architectures, the pretrained transformer models have drawn increasing attention, especially for multimodal scenarios. However, the research of multimodal pretrained transformer (MPT) for knowledge graph reasoning (KGR) is still at an early stage. As the biggest difference between MKG and other multimodal data, the rich structural information underlying the MKG still cannot be fully leveraged in existing MPT models. Most of them only utilize the graph structure as a retrieval map for matching images and texts connected with the same entity. This manner hinders their reasoning performances. To this end, we propose the graph Structure Guided Multimodal Pretrained Transformer for knowledge graph reasoning, termed SGMPT. Specifically, the graph structure encoder is adopted for structural feature encoding. Then, a structure-guided fusion module with two different strategies, i.e., weighted summation and alignment constraint, is first designed to inject the structural information into both the textual and visual features. To the best of our knowledge, SGMPT is the first MPT model for multimodal KGR, which mines the structural information underlying the knowledge graph. Extensive experiments on FB15k-237-IMG and WN18-IMG, demonstrate that our SGMPT outperforms existing state-of-the-art models, and prove the effectiveness of the designed strategies.

View on arXiv
Comments on this paper